
Homihelp Smart Contract Audit

RED4SEC Page 1

Security Audit ERC-20 Smart Contract

Homihelp

2020-08-13

Homihelp Smart Contract Audit

RED4SEC Page 2

Introduction

Homihelp is a customer support services platform that sells its services

through cryptocurrency, aims to make cryptocurrency more accessible and

implement decentralized features in software one by one so that users can

easily understand the decentralized apps feature wise by using in daily

business tools.

Homihelp is the communication bridge that fills the gap between your

customers and your business. Homihelp provides omnichannel support tools

for businesses to provide top class support for their customers.

As requested by Homihelp and as part of the vulnerability review and

management process, Red4Sec has been asked to perform a security code

audit and a cryptographic assessment in order to evaluate the security of

the Homihelp Smart Contract source code.

Scope

The scope of this evaluation includes:

• Description: Homihelp Smart Contract Security Audit.

• Smart Contract:

https://cn.etherscan.com/token/0xCa208BfD69ae6D2667f1FCbE681BAe12767c0078

Homihelp Smart Contract Audit

RED4SEC Page 3

Conclusions

The general conclusion resulting from the conducted audit, is that the

Homihelp’s Smart Contract is secure and does not present any known

vulnerabilities.

The overall impression about code quality and organization is very positive,

although Red4Sec has found some potential improvements, these do not

pose any risk by themselves. We have classified such issues as informative

only, but they will help Homihelp to continue to improve the security and

quality of its developments.

Homihelp Smart Contract Audit

RED4SEC Page 4

Recommendations

Outdated Compiler Version

Solc frequently launches new versions of the compiler. Using an outdated

version of the compiler can be problematic, especially if there are errors

that have been made public or known vulnerabilities that affect such

version.

We have detected that the audited contract uses the following version of

Solidity pragma ^0.5.8:

Nevertheless, when the deploy was made (13th of April 2020), the last

available version was 0.6.5, therefore, the pragma used should have been

that one.

Finally, the contract was compiled with the version

v0.5.8+commit.23d335f2, as we can observe in the following image.

Homihelp Smart Contract Audit

RED4SEC Page 5

It is always of good policy to use the most restrictive and up to date version

of the pragma.

References

• https://github.com/ethereum/solidity/releases/tag/v0.6.5
• https://github.com/ethereum/solidity/blob/develop/Changelog.md

https://github.com/ethereum/solidity/blob/develop/Changelog.md

Homihelp Smart Contract Audit

RED4SEC Page 6

Provide License for Third-Party Code

The SafeMath.sol contract from OpenZeppelin, which is used for arithmetic

operations, has been detected as included in the Homihelp project.

However, these contracts have been included in the repository by copying

it rather than by package manager.

This is not recommended by OpenZeppelin, although is not necessarily

incorrect, it can be considered as a vector of attack. We could obtain this

update automatically by using the original sources and if the project

resolves any vulnerability or bug in the code, which results in avoiding

known vulnerabilities.

Additionally, these OpenZeppelin contracts are under the MIT license, which

requires its license to be included within the code. For this reason, we highly

recommend including a reference or copyright in the Homihelp project.

References

• https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/math/SafeMath.sol

• https://github.com/homihelp/smart-contract/blob/master/homihelp.sol

Recommendations

• Include third-party code through package managers.

• Include in the Homihelp project a reference to OpenZeppelin code

since it’s under the MIT license and it’s required by such.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol
https://github.com/homihelp/smart-contract/blob/master/homihelp.sol

Homihelp Smart Contract Audit

RED4SEC Page 7

GAS Usage Optimization

Software optimization is the process of modifying a software system to
make an aspect of it work more efficiently or use less resources. This

premise must be applied to smart contracts as well, so that they execute

faster or in order to save GAS.

On Ethereum blockchain, GAS is an execution fee which is used to

compensate miners for the computational resources required to power
smart contracts. If the network usage is increasing, so will the value of GAS

optimization.

These are some of the requirements that must be met to reduce GAS

consumption:

• Short-circuiting.
• Remove redundant or dead code.

• Delete unnecessary libraries.
• Explicit function visibility.

• Use of proper data types.

• Use hardcoded CONSTANT instead of state variables.
• Avoid expensive operations in a loop.

• Pay special attention to mathematical operations and comparisons.

Remove Unnecessary Steps

Following, an example that results unalarming, because it only affects the
cost of the deploy:

The constructor of the BaseToken class sets the owner’s balance to zero,

this step is necessary since its value it’s later established in the HOMIHELP

class.

Reference

• https://github.com/homihelp/smart-

contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol#L205

https://github.com/homihelp/smart-contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol%23L205
https://github.com/homihelp/smart-contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol%23L205

Homihelp Smart Contract Audit

RED4SEC Page 8

Unused Variables

Just as the previous case, the declaration of the two following variables,

which are not used, result in a higher cost of the deploy. Is of good practice

to eliminate such variables.

References

• https://github.com/homihelp/smart-

contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol#L176

• https://github.com/homihelp/smart-

contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol#L376

Logic Optimizations

Unlike the previous cases, this optimization affects all variables and not only

during the deployment. Therefore, by optimizing this function, the cost of

GAS in each transaction will be lower, saving the users costs in GAS.

In the following balance variable (represented by point #1) the variable

should be declared in the else of the condition. This prevents reading the

memory of such balance, since it is not used in case that the locked balance

is less than or equal to 0.

Next, represented by point #2, you can observe a condition that can be

erased without affecting the logic of the contract.

Reference

• https://github.com/homihelp/smart-

contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol#L256

https://github.com/homihelp/smart-contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol#L176
https://github.com/homihelp/smart-contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol#L176
https://github.com/homihelp/smart-contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol#L256
https://github.com/homihelp/smart-contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol#L256

Homihelp Smart Contract Audit

RED4SEC Page 9

Use of Same Variable for Multiple Purposes

This issue is not critical, nor it poses a risk. The issue was added to this

report to improve the good practices of the developers of the future.

In the 143 line, we can observe that when a new owner is set, it is verified

that the msg.sender is equal to the previously proposed owner

(proposedOwner) the problem is that proposedOwner is also used as a flag

with address(0) as an inactive/false value.

In order to make a more resilient code, checking that msg.sender is never

equal to this inactive flag, i.e. address(0), is of good practice. Because, if

it’s able to send a transaction with an empty sender, a takeover of the Smart

Contract could happen.

Nowadays, this is practically impossible because it would need the private

key of that address, however, it is worth mentioning that Ethereum is a

living project and that it is continuously undergoing modifications, a clear

example is the EIP86 designed to abstract the verification of signatures in

which the NULL_SENDER is set to: 2**160 – 1.

Therefore, it would be pretentious to state that in a near future, special

transactions will not be from address(0) as special feature. Which would

mean having to redeploy the contract, so it doesn’t become vulnerable.

References

• https://github.com/homihelp/smart-
contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol#L
141

• https://github.com/ethereum/EIPs/blob/master/EIPS/eip-86.md

https://github.com/homihelp/smart-contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol#L141
https://github.com/homihelp/smart-contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol#L141
https://github.com/homihelp/smart-contract/blob/df99a9983b1d5ec85fa0c4aca5f024edd31de7ea/homihelp.sol#L141

Homihelp Smart Contract Audit

RED4SEC Page 10

Recommendations

• Check that msg.sender is different from 0.

• Or, create a new flag variable for the proposedOwner.

Homihelp Smart Contract Audit

RED4SEC Page 11

Denial of Service by Locks

The logic executed to check if a balance is locked might trigger a denial of

service (DoS).

A denial of service (DoS) attack is an attack on a computer system,

functionality or network that causes a service or resource to be inaccessible

to legitimate users.

Loops without limits are considered a bad practice in the development of

Smart Contracts, because they can cause a denial of service or overly

expensive executions such is the case affecting Homihelp.

In the following image, we can observe that when the locked balance of an

account is calculated, all possible locks of the account are traversed, this

allows a denial of service when the account has enough locks to exceed the

maximum allowed GAS per block, which currently is of 12 million

approximately.

Homihelp Smart Contract Audit

RED4SEC Page 12

The criticality of this vulnerability is drastically reduced since the

administrator is the only one allowed to transfer balances with locks and to

eliminate them. This makes such practice unadvisable, since it gives the

administrator the possibility to directly make a denial of service in a specific

account, even if it’s at a high cost.

It shall be noted that eliminating the expired Locks, is convenient, since

they produce more GAS consumption in the transfers of the users which

have locks, even if they have expired.

Homihelp Smart Contract Audit

RED4SEC Page 13

Decentralization Recommendation

In order to promote decentralization, it would be advisable to improve the

start-stop logic of the contract.

Currently, this logic works as a switch and the only one capable of altering

it is the administrator.

While we understand that business logic is necessary for the project, it could

be implemented in a way that the stop function detains the contract

transactions during a determined number of blocks, this would force the

administrator to have to make another transaction if he wants to extend

that time.

Therefore, this would prevent all users of the token from being affected if

the start method is not called again after a temporary stop of the contract.

